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Detection of Signals by Weighted Integrate-and-Dump Filter 
R.  Sadr 

Communications Systems Research Section 

A Weighted Integrate-and-Dump Filter (WIDF) is presented that results in reducing 
those losses in telemetry symbol SNR which occur in digital Integrate-and-Dump Filters 
(IDFs) when the samples are not phase locked to the input data symbol clock. The Mini- 
mum Mean Square Error (MMSE) criterion is used to derive a set of weights for approxi- 
mating the analog integrate-and-dump filter, which is the matched filter for detection of  
signals in additive white Gaussian noise. This new digital matched filter results in consid- 
erable performance improvement compared to unweighted digital matched filters. An  
example is presented for a sampling rate of four times the symbol rate. As the sampling 
offset (or phase) varies with respect to the data symbol boundaries, the output SNR 

over random data patterns. This improvement in performance relative to unweighted IDF 
means that significantly lower sampling and processing rates can be used for given telem- 
etry symbol rates, resulting in reduced system cost. 

1 varies 1 dB for an unweighted IDF, but only 0.3 dB for the optimum WIDF, averaged 

I 1. Introduction 
The effect of “offset sampling” for the unweighted digital 

Integrate-and-Dump Filter (IDF) was considered in [ 11 . A set 
of practical guidelines is outlined in [ l ]  that can be used to 
determine the appropriate sampling period and the filter band- 
width for the digital IDF. In addition, the effect of offset 
sampling was comprehensively studied, and the degradation 
due to approximating the analog IDF with digital IDF was 
analyzed. By “offset sampling,” we mean that the sampling 
clock is not phase locked to the telemetry symbol clock. 

The IDF is the optimum matched filter for detection of 
signals in Additive White Gaussian Noise (AWGN). In this 
article, a new class of digital matched filters is considered 
which decreases the degradation due to approximating the ana- 
log IDF with the digital IDF. 

The problem is formulated in the context of waveform 
tracking. The waveform which is tracked by the linear estima- 
tor is the sampled output of the analog IDF. The mean square 
error criterion is used to derive the digital matched filter. The 
observed signal for derivation of the digital matched filter is 
the sampled sequence of the received signal during a single 
symbol time of T seconds. In a sampled data system, normally 
an anti-aliasing low-pass (or bandpass) filter is used to filter 
the analog source. The effect of this filter is specifically 
considered. 

In Section 11, the underlying system is described. In Section 
111, the new digital matched filter is formulated. In Section IV, 
a linear system is proposed that generates the necessary auto- 
correlation functions for computation of the optimal weight 
sequence. In Section V, the average signal response expression 
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is derived for the weighted integrate-and-dump filter in the 
presence of offset sampling. In Section VI, the noise response 
of the system is considered. In Section VII, the definition of 
SNR loss due to the approximation of the analog IDF with the 
digital IDF is stated. In Section VIII, results of the previous 
sections are used to find the optimum weighted IDF for a spe- 
cial case when an ideal filter is used prior to sampling the 
observed signal and the transmitted signal is a sequence of 
rectangular pulses. The relationship of our approach to linear 
equalizers, Wiener filtering, and decoding for intersymbol 
interference channels is also discussed in this section. In Sec- 
tion IX, the performance of the system is evaluated. A glossary 
of terms appears at the end of the article. 

II. System Description 
The received signal plus noise is denoted by r ( t )  = s ( t  - T ~ )  

t n(t;) ,  where s ( t )  is the signal, n ( t )  is AWGN and T~ is the 
delay from the transmitter to the receiver. The transmitted sig- 
nal s ( t )  is 

a sequence of pulses with a pulse-shaping waveform p( t ) .  
The input alphabet U is a finite alphabet with aieU = 
{kl ,  k 2 , .  . . , }. 

The analog IDF is shown in Fig. l(a). The analog IDF is an 
ideal matched filter when p ( t )  is a rectangular pulse from t = 0 
to r = T.  It detects the kth symbol by integrating over time 
k T t 7 ,  t o ( k t  ~ ) T + T ~ .  

The digital IDF is depicted in Fig. I(b). In the digital imple- 
mentation a low-pass anti-aliasing filter is used for filtering 
the input signal. In this article the one-sided bandwidth of 
this filter is denoted by W(Hz). The filter output is sampled, 
with the i th sample occurring at time iT, + 7,. The digital IDF 
detects the k th  symbol by summing all the samples from 
t =  k T +  T o  to I = (k  t 1 ) T t  T o .  

We assume that there is perfect symbol synchronization at 
the receiver, in the sense that the beginning and end times of 
each symbol are known. For the k th  symbol the “Sampling 
Offset” is defined by the length of time after the start of the 
symbol to when the first sample in the symbol occurs. This 
time is (iT, + T ~ )  - (kT + T ~ )  for the smallest i such that the 
expression is nonnegative. The first sample of each symbol 
may occur anywhere between 0 and T, seconds after the 
beginning of the symbol. A typical symbol waveform and the 
sampling points are shown in Fig. 2. 

To illustrate the effect of offset in sampling, Fig. 3 depicts 
one pulse of the sampled waveform for an alternating rectan- 
gular data pattern of length 21, when the anti-aliasing filter is 
an ideal low-pass filter. The sampled waveform for the 11 th 
symbol, a -1 pulse, is shown in Fig. 3 for WT = 2 ,  and for 
T = 4T,. The fdtered waveform is not rectangular due to the 
finite bandwidth of the anti-aliasing filter. In Fig. 3, for every 
sampling offset value, with increments T, * 0.05, a unique 
English letter (a through t) is used to indicate the point at 
which the sample occurs. Every letter occurs four times, corre- 
sponding to the four samples per symbol. 

In an earlier article [ l ]  , we considered the effect of offset 
in the digital IDF. It was shown that the loss due to offset in 
sampling is significant when the number of samples per sym- 
bol is low (TIT, < 8). The loss depends on the bandwidth W, 
the sampling rate, and the relative phase of the samples and 
symbols. If the signal is sampled at the optimum sampling time 
the loss is relatively small. This loss is due to bandwidth limit- 
ing of the input signal. For example, when four samples per 
symbol are used in the digital IDF, i.e., T/T,  = 4 and WT= 2,  
the worst case loss is approximately 1.2 dB averaged over ran- 
dom data patterns. This occurs when the offset is zero, indi- 
cated by the letter a in Fig. 3. The minimum loss is 0.35 dB 
when the offset is T,/2, indicated by the letter j in Fig. 3. Thus 
a variation of 0.8 dB in the loss occurs due to the phase of the 
offset in sampling. To decrease this variation and, as a result, to 
reduce system sensitivity due to the offset, we are led to con- 
sider the Weighted Integrate-and-Dump Filter (WIDF), which 
is the main subject of this article. 

111. Derivation of the WIDF Using MSE 
In Fig. 1 the IDF is shown for both the analog and digital 

implementations. The sampled output of the analog IDF is 
A (kT), denoted as simply A k. In this section, the minimum 
mean square error criterion is used to estimate the sequence 
A ,  from the digital samples. 

We formulate the problem in the context of Fig. 4(a). In 
this figure the digital IDF filter is denoted by f(*). The oper- 
ator f(*) maps the observation vector y = ( y , , y 2 ,  . . . ,y,) in 
the kth symbol onto A^(kT), an estimate of A (kT) .  

We seek to find f(.) such that the minimum mean square 
error criterion is minimized, i.e., we minimize 

A 

where A ,  = f(y), and E [ a ]  denotes the expectation operator. 
Note here that the estimate of A ,  is based only on the obser- 
vation vector during a single symbol time. In Section 111, we 
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briefly discuss the case when this restriction is relaxed, when 
the relationship of WIDF to linear equalizers is pointed out. 

I t  can be shown [ 2 ]  - [4]  that the optimal f ( y )  is the con- 
ditional expectation of A ,  conditioned on the observed vec- 
to ry :  

Since r ( t )  = s ( t )  + n(t), and n ( t )  is AWGN, the conditional 
probability density function of r ( t )  conditioned on the input 
data sequence a is Gaussian. However, the conditional proba- 
bility density function of A, conditioned on y is not Gaussian 
due to Inter Symbol Interference (ISI), and it is almost impos- 
sible to explicitly evaluate this probability density function. 
We assume this density function is Gaussian, and hence the 
conditional expectation is a linear function of the observed 
vector y, Thus, under this assumption, 

N 

(4) 
i= 1 

We shall not state the complete derivation of the Linear 
Minimum Mean Square Error (LMMSE) criterion. Interested 
readers could refer to [ 2 ] ,  [3]  to obtain the complete deri- 
vation of the following result. 

The optimum weight sequence w = ( w l ,  w 2 , .  . . , w N )  may 
be expressed in terms of the second order statistics of the 
observed vector y as 

where the matrix Ryy is the autocorrelation matrix (assum- 
ing RyY is nonsingular) with elements E [ y g j ] ,  and R,,* is the 
cross-correlation vector between y i  and A,, with elements 
E [ y i A , ] ,  where E [ * ]  denotes the expectation operator. 

- 
RYY - 
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and 

In order to evaluate the matrix Ryv and the vector R y A ,  
in the following section a linear system is specified which 
generates the autocorrelation functions R,,(T) and RyA (7). 

The matrix qy and the vector are obtained by sampling 
the autocorrelation functions at time c = iTs t 6 ,  for ie [ 1,N] , 
where S is the offset. 

IV. Evaluation of Matrix Ryy and Vector R y ~  
The following results are a direct consequence of the appli- 

cation of second order statistics of a stationary stochastic pro- 
cess to the input-output relations of a linear system [ 3 ] ,  [ 5 ] .  
Throughout this article on-line "$' denotes convolution, and 
superscript 'W' denotes the complex conjugate. 

To compute the autocorrelation function Ryy(7), note 
that 

let x ( t )  = s ( t )  :k h(t) represent the filtered signal component, 
and z ( t )  = n( t )  :::h(t) represent the filtered noise component of 
y( t ) .  The autocorrelation function Ryy(7)  may be expressed 
in terms of the cross-correlation of Rys(7) and R,,(7) as 

The two cross-correlation functions Rys(r)  and R,,(T) are 

To compute R,, ( T ) ,  note that 



The cross-correlation function R (7) may be expressed 
as 

for a fixed T ,  where the pair Rys(7)  and Ryn(7)  are given by 
(10). 

Figure 5 depicts a linear system which can be used to 
evaluate the two autocorrelation functions R,, and R,, . 
In Fig. 5 the input to the system is the autocorrelation func- 
tion of the received signal, and the outputs are the desired 
autocorrelation functions R y y ( r )  and R,, (7). The sampled 
sequence of Ryy( r )  and R (7) generates the corresponding 
matrices Ryu and RyA. This illustrates a method to obtain 
the correlation necessary to calculate the optimal weight 
sequence w,  from (5). 

y e  

V. Average Signal Response 
We now seek to determine the average signal response for 

the output of the WIDF. 

The response of the low pass filter to the observed signal 

noise n(t) is assumed to have zero mean, the conditional 
expectation ofyi is 

With a change of variable (15) can be written as 

E[y,Ial = E 'k '  [" h(iT, - kT + 6 - x) p(x)dx 
k'  J-- 

where 6 = T~ - 70. Let 

h(iTs - kT + 6 - x) p(x)du (1 7) 
q,(k, 6 )  = I: 

represent the signal response of the filter at time iTs t T~ due 
to a single pulse at time kT + T ~ .  For simplicity we denote 
q,(k, 6) as simply qi(k).  The total average signal response 
from (16), for a given fixed 6 ,  may be expressed as 

r ( r )  is 

Using (1) for s ( r )  we have 

The signal y(r) is sampled each T, sec, at time iTs + T ~ .  

We denote y(iT, + 7,) as yi. Taking the expectation of (14) 

k'  

Let Z k  be the set of all i such that the i th sample falls in 
the k th  symbol time, i.e., 

f' = { i :  k T < i T s + 6 < ( k +  1)T) (19) 

The WIDF output for the kth symbol, denoted by A , ,  is 

k i e l  

The expectation of zk over the noise, conditioned on a 
and 6 ,  is 

k k' conditioned on a given data- sequence a and noting that the i d  
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To further simplify this expression, define the event indi- 
cator function which is 1 if and only if idk, i.e., 1 ; when kTQiT ,  t 6 < (k  t l )T  

ti@, k) = (22) 
otherwise 

Thus from (21) we have 

i k' 

VI. Noise Response 
Now we consider the noise response of WIDF in order to 

compute the total SNR at the output of the WIDF. Let 
zi denote the sampled noise response of the filter at time 
iT, t T ~ .  

f -  

Since the WIDF is a linear system, the variance o f z ,  con- 
ditioned on a is equal to the variance of the response of the 
k th  symbol due to noise alone, Le., it is independent of s ( t ) .  
The variance of Ahk is 

Note that this variance does depend on 6 and k ,  since the 
number of samples occurring in the k th symbol depends on 6 .  
Using (22) and noting that E [n( t )n(~)]  = N 0 / 2  6,(r - T) (6, 
here is the Dirac delta function), we have 

i j  

where RZ(*) is the autocorrelation of z i .  

VII. Definition of SNR Loss 
In this section, we define a measure to evaluate the degra- 

dation which results in using the WIDF as opposed to analog 
IDF. The analog IDF of Fig. l(a) is the optimum matched fil- 

ter when p ( t )  = l for 0 < t < T and zero otherwise. We define 
SNR at the IDF output as the ratio of the square of the mean 
to the variance. Denoting SNR, for the analog IDF, it is well 
known [ 6 ]  that 

2A2T SNR, = - 
NO 

We assume with no loss of generality that the signal ampli- 
tude A = 1 .  Denoting SNRD as the SNR at the output of the 
WIDF, we compare the SNR, with the analog IDF by con- 
sidering the ratio 

SNR, 

SNR, 
y e  - 

Define 

and then we have 

In the remaining sections ydB = 10*loglo(y) (dB) is com- 
puted for various filters and data patterns. Normally y < 1 ,  
because the digital IDF has a loss with respect to the analog 
IDF. The loss in dB is -yd B .  The minimum loss corresponds 
to the maximum y which typically approaches one (ydB 
= 0 dB). Maximum loss is unbounded and corresponds to 
infinity (in dB). 

VIII. WIDF for Rectangular Pulse and 
Ideal Filter 

In general, the pulse shape p ( t )  may be chosen to take 
numerous shapes (e.g., raised root-cosine). In some cases, 
it is chosen to extend over more than one symbol duration, 
such as for partial response signaling (sometimes referred to 
as correlated coding or controlled intersymbol interference). 
For bandwidth-limited channels, the pulse shape and duration 
are selected to increase the bandwidth efficiency of the com- 
munication system. 

The motivation to consider the ideal low pass filter is to 
eliminate aliasing in an ideal manner. The use of a realizable 
filter such as Butherworth or Chebyshev [7] does not greatly 
influence the results, since the realizable filter can be consid- 
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ered as an approximation to the unrealizable filter with finite 
group delay [7]. 

Inserting (34) into (31) yields the average signal response. 
To find the noise variance, it suffices to note that the noise 
spectral density at the output of the filter is 

We consider only non-overlapping rectangular , pulses 
throughout the rest of this article, since this pulse shape has 
traditionally been used for NASA's deep space missions. 

(35) 
otherwise 

i o  
S"(f> = In the case of the rectangular pulse we simply have 

and thus the autocorrelation function is 

Then from (1 7), qi(k) is 
Thus, the noise variance at the output of WIDF can be 

expressed from (26) and (36)  as 

var[A ,̂ I 6 ,  a] = qi(k) = lT h(iT, - k T  + 6 - X) dx (30) 

and from (2 l), the average signal response is 

(37) 

Thus from (29) and (37), 7 can be evaluated for arbitrary 
w and rectangular pulse shapes and ideal filters as 

The ideal low pass filter with unit gain and low pass band- 
width W - Hz is noncausal with impulse response 

7 =  

1; uk, wi (Si(2n W(iTs - (k  + 1)T+ 6))- Si(2n W(iTs - kT + 6)))1* 

h ( 9  = 2W sin 2n 2n Wt = 2W sin c(2n W t )  (32) 

The expression for the signal response in (30) does not 
evaluate to a closed form in this case, but is 

The next step is to compute the optimum weights accord- 
ing to (5). This requires the evaluation of R,, and R,, given 
by (9) and (12). We consider the special case in this section 
where the filter h(t) is an ideal rectangular filter and p ( t )  is a 
rectangular pulse. Referring to Fig. 5 ,  and using the h * (-7) = 
h(7), one can verify that for an ideal filter 

T sin 2n W(iT, - k t  t 6 -x )  
- dx (33) = (iT, - k T +  6 -x)  

It is possible to express (33) in terms of 

sin u 
Si(x) = J -du U 

The signal autocorrelation function R=(T) for a random 
binary waveform [7] is 

as 

1 q,(k) = ; [Si(2n W(iT, - ( k  t l )T  t 6)) 

- Si(2n W(iTs - k T  + S))] (34) 
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The ideal filter impulse response as in (32) is 

h(t) = 2 W sin c(2n W t )  (41) 

For simplicity, let Rx(7)  = Rss(7) %h(r )  and RZ(7) = R n f l ( ~ ) %  
h(7). Thus RX(7)  is 

Since the input signal autocorrelation function (40) is 
nonzero only in the interval [-T, T I ,  (42) is 

f T  
(43) 

This integral can be explicitly evaluated for h(t)  in (41) by 
decomposing it into two successive integrals 

f 0  fT 

(44) 

After some manipulation (44) can be explicitly evaluated in 
terms of the Si(*)  function, and it yields 

I 1 
BT 

t - [COS(B(T t T)) t cos(B(.r - T)) - 2 cos(B~)] 

(45) 

where B = 2n W. 

To evaluate RZ(7) ,  consider 

which is simply 

To evaluate R,,(T) we need to integrate (45) and (47) 
over [ t  - T, t ]  . The expression in (45) does not evaluate to a 

closed form expression, but integrating (47) over this interval 
yields 

Thus. we have 

N o  Rx(t)dt  +- (SI'(BT)) - Si(B(7 - 0) 
R ~ A  =I-, 2 

(49) 

and R,,(T) is 

where R,(T) is defined in (45) and R,(T) is defined in (47). 
The optimum weights are calculated using (49) and (50) in 
(5). 

A. Relationship to Linear Equalizer 

In general, the signal processing algorithm that is designed 
to compensate for the IS1 of the communication channel is 
referred to as an "equalizer." The most common method for 
equalization is a transversal filter [8], which is designed such 
that its coefficients optimize the performance of a system 
according to criteria selected by the designer. 

When the MSE criterion is used to obtain the tap weight 
coefficients of the equalizer, the equalizer is equivalent to the 
WIDF when N ,  the length of the observation vector y in@), 
exceeds the number samples in a single symbol time, i.e., 
N > T/T,. It is pointed out that all our results will hold in this 
case, and our analysis for derivation of the WIDF can be effec- 
tively used for designing LMSE equalizers. 

The optimal decoding algorithm for channels with IS1 uses 
the maximum likelihood sequence estimation. Viterbi and 
Omura [9] discuss optimal decoding for IS1 channels using 
the maximum likelihood sequence estimation, and they formu- 
late the application of the Viterbi algorithm for estimating the 
data sequence, which results in a nonlinear estimator. 

6. Relationship to Wiener and Kalman Filtering 

If the length of the observation vector y in ( 2 )  is infinite 
(N = m), it is well known that the optimal matched filter is the 
discrete time Wiener filter [2].  The Wiener-Hopf method 
requires the factorization of a spectral density matrix. Analy- 
tical solutions for this method are very difficult to derive, and 
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even when they do exist, it is an arduous task to physically 
realize such filters. 

For lumped processes [2] which result by passing the 
received signal through a realizable filter, it is possible to 
model the observation process using a state space model. In 
this case Kalman filtering [2] -[4] can be applied to both vec- 
tor observation (finite N) and time varying state space mod- 
els. That subject is beyond the scope of this article. 

IX. Performance Analysis 
In this section we compute the set of weight coefficients 

for the case when N = 4, evaluate the degradation of the 
WJDF, and compare its loss with the digital IDF. 

The software simulation programs explicitly compute (38) 
for arbitrary input signal sequences a, when an ideal filter is 
used and the input pulse shape p(r)  is a rectangular pulse. 

In Table 1 ,  the optimum set of weight coefficients for the 
case when TIT, = 4 and WT = 2 is shown. These weights were 
computed using (5) and computing R,, and R,, using (49) 
and (50). 

I 
1 

~ 

The output of the ideal low pass filter depends on both the 
past and future inputs. To approximate this, we consider a 
21-symbol block, and the 11th symbol is analyzed for each 
data pattern. A block of 21 .symbols was found to be suffi- 
ciently long to analyze the IDF [ 11 . 

Figure 6 shows the performance when the input data pat- 
tern a is a sequence of alternating t1, -1 sequences, i.e., 
a = ( t l ,  -1, t 1 ,  -1, . . . ). The degradation for the 1 l t h  symbol 
is shown for both the IDF and WIDF. The WIDF is less lossy 
than the IDF for all values of offset. For the best offset, 0.5, 
the loss is 0.4 dB for the WIDF and 0.46 dB for the IDF, a 
minimal difference. This loss is mainly due to the bandwidth 
limiting. For the worst case offset, 0.0, the WIDF is more than 
1.0 dB better than the IDF, with a loss of 0.77 dB for the 
WIDF and 1.81 dB for the IDF. The variation in the degrada- 
tion due to offset decreases from 1.35 dB to only 0.33 dB for 
the WIDF. 

In Fig. 7 ,  the average loss is shown for a random binary 
vector of 4640 symbols, using the same set of weighing coeffi- 
cients. For each offset, the average is computed by breaking 
the 4640 symbol vector into 220 blocks 21 symbols long and 
computing the loss of the 11 th symbol for each block, and 
finally computing the average loss. For the best offset, the 
losses for the WIDF and IDF are again similar, and they are 
slightly less than for the alternating data pattern. The worst 
case losses, averaged over the data patterns, are 1.26 dB for 
the IDF but only 0.68 dB for the WIDF, an improvement of 
0.58 dB. For the WIDF, the variation in average performance 
over offset is less than 0.3 dB. 

X. Conclusion 
In this article, based on the MSE criterion, a new class of 

digital matched filters was derived, which approximates the 
analog IDF. A linear system was outlined that generates the 
autocorrelation functions necessary to evaluate the WIDF. The 
SNR loss due to using WIDF was formulated. 

The WIDF weighting coefficients which are optimum in the 
mean square sense were computed for the case when an ideal 
filter and rectangular pulse shape are used. The performance 
for this case was evaluated for the case of four samples per 
symbol. It was shown that the variation due to offset was 
reduced to under 0.3 dB for the WIDF, from almost 1 dB for 
the IDF, averaged over a random pattern. Compared to a sys- 
tem with the samples phase locked to the symbol clock, a 
WIDF with offset sampling suffers a worst case offset loss of 
less than 0.3 dB, and an average loss of less than 0.15 dB. 

This improved performance means that lower sampling 
and processing rates can be used for a given symbol rate, 
resulting in reduced system cost. Alternately, for a fixed 
bandwidth and sampling rate, higher telemetry rates are 
enabled. Telemetry symbol rates of one-half the bandwidth 
and one-fourth of the sampling rate can be realized with a loss 
due to bandwidth limiting, sampling and filtering of less than ' 

0.6 dB. An unweighted IDF [ l ]  would require approximately 
twice the bandwidth and twice the sampling rate for the same 
performance. 
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Glossary of Terms 

Sampling time in sec 

Symbol time in sec 

Filter bandwidth in hertz 

Transmitted symbol 

Pulse shaping waveform 

The sampled output of Integrate-and-Dump Filter at time k 

The sampled output of the prefilter 

The transmitted signal 

Additive White Gaussian Noise with flat spectral density N0/2  

The received signal 

The output of the low-pass prefilter 

The transfer function of the low-pass prefilter 

Transport lag from transmitter to receiver in sec 

Sampling offset in sec 

Autocorrelation function of signal x( t )  
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Table 1. Weight coefficients for WlDF N = 4, WT = 2 

Offset W 1  w2 w3 w4 

0 0.5 1.24 0.9 1.24 
0.05 T, 0.5 1.22 0.9 1.22 
0.1 T, 0.6 1.20 0.9 1.20 
0.15 T, 0.6 1.18 0.9 1.18 
0.2 T, 0.7 1.16 0.9 1.16 
0.25 T, 0.7 1.13 0.9 1.13 

0.3 T, 0.8 1.12 0.9 1.10 
0.35 T, 0.8 1.09 0.9 1.07 
0.4 T, 0.8 1.07 1.01 1.03 
0.45 T, 0.9 1.05 1.03 1.01 
0.5 T, 0.9 1.03 1.03 0.9 
0.55 T, 1.01 1.03 1 .05 0.9 

0.6 T, 1.03 1.01 1.07 0.8 
0.65 T, 1.07 0.9 1.09 0.8 
0.7 Ts 1.10 0.9 1.12 0.8 
Q.75 T, 1.13 0.9 1.13 0.7 
0.8 Ts 1.16 0.9 1.16 0.7 
0.85 T, 1.18 0.9 1.18 0.6 
0.9 T, 1.20 0.9 1.20 0.6 
0.95 T, 1.22 0.9 1.22 0.5 

1.24 0.9 1.24 0.5 T, 
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T s ( t )  

I I 
k T  (k t 1) T 

Fig. 1. Integrate-and-dump filters: (a) analog; (b) digital 
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Fig. 2. Offset in sampling 
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Fig. 3. Sampled waveform (WT = 2), alternating data pattern with T/Ts = 4 
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Fig. 6. Comparison of hdB for IDF and WlDF for alternating 
data pattern 

Fig. 4. Digital matched filtering: (a) optimum digital matched 
filter; (b) weighted integrate-anddump filter 
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Fig. 5. Linear system to generate Rw (T) ,  R&) 
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Fig. 7. Comparison of AdB for IDF and WlDF for random 
data pattern 
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